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Analysis of Frames Without Sidesway

• The procedure for the analysis of frames without sidesway is
similar to that for the analysis of continuous beam.

• Unlike the continuous beams, more than two members may be
connected to a joint of a frame.
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Example 1

• Determine the member end moments and reactions for the frame
shown by the moment-distribution method.
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Solution

1.Distribution Factors

• Distribution Factors at Joint C,
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• Distribution Factors at Joint D,
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• Distribution Factors at Joint E,

2.Fixed-End Moments (FEMs)

3.Moment Distribution

4.Final Moments
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Analysis of Frames With Sidesway

Consider the rectangular frame shown in Figure.

A qualitative deflected shape of the frame for an arbitrary loading
is shown in the figure using an exaggerated scale.
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While the fixed joints A and B of the frame are completely
restrained against rotation as well as translation, the joints C and D
are free to rotate and translate.

Since the members of the frame are assumed to be inextensible
and the deformations are assumed to be small, the joints C and D
displace by the same amount Δ, in the horizontal direction only.
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The MD analysis of such a frame, with sidesway, is carried out in
two parts.

In the first part, the sidesway of the frame is prevented by adding
an imaginary roller to the structure.

External loads are then applied to this frame, and MEM are
computed by applying the MD process in the usual manner.
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With the MEM known, the restraining force (reaction) R that
develops at the imaginary support is evaluated by applying the
equations of equilibrium.

In the second part of the analysis, the frame is subjected to the
force R, which is applied in the opposite direction, as shown in the
next slide.
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The moments that develop at the member ends are determined
and superimposed on the moments computed in the first part to
obtain the member end moments in the actual frame.

If M, MO, and MR denote, respectively, the MEM in the actual
frame, the frame with sidesway prevented, and the frame
subjected to R, then we can write
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An important question that arises in the second part is “how to
determine the member end moments MR that develop when the
frame undergoes sidesway under the action of R”.

The MDM cannot be used directly to compute the moments due to
the known lateral load R, we employ an indirect approach in which
the frame is subjected to an arbitrary known joint translation Δ’
caused by an unload load Q acting at the location and in the
direction of R.

From the known joint translation, Δ’, we determine the relative
translation between the ends of each member, and we calculate
the member FEMs in the same manner as done previously in the
case of support settlements.

15



16

A B

D

C Q

Δ Δ

Frame subjected to an arbitrary 
Translation Δ’
MQ Moments



The FEMs thus obtained are distributed by the MD process to
determine the MEMs MQ caused by the yet-unknown load Q.

Once the MEMs MQ have been determined, the magnitude of Q
can be evaluated by the application of equilibrium equations.

With the load Q and the corresponding moments MQ known, the
desired moments MR due to the lateral load R can now be
determined easily by multiplying MQ by the ratio R/Q; that is

By substituting this Equation into the last Equation, w can express
the MEMs in the actual frame as
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Example 2

• Determine the member end moments and reactions for the frame
shown by the moment-distribution method.
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Solution

• Distribution Factors

At joint C

At joint D
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• Part 1: Sidesway Prevented

The sidesway of frame is prevented by adding an imaginary roller
at joint C.

Assuming that joint C and D of this frame are clamped against
rotation, we calculate the FEMs due to the external loads to be
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The MD of these FEMs is then performed, as shown on the MD
Table to determine the MEMs “MO” in the frame with sidesway
prevented.
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To evaluate the restraining force R that develops at the imaginary
roller support, we first calculate the shears at the lower ends of the
columns AC and BD by considering the moment equilibrium of the
free bodies of the columns.
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Next, by considering the equilibrium of the horizontal forces acting
on the entire frame, we determine the restraining force R to be

Restraining force acts to the right, indicating that if the roller would
not have been in place, the frame would have swayed to the left.
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• Part 2: Sidesway Permitted

Since the actual frame is not supported by a roller at joint C, we
neutralize the effect of the restraining force by applying a lateral
load R = 2.06 kN in the opposite direction to the frame.

MD method cannot be used directly to compute MEMs MR due to the
lateral load R = 2.06 kN, we use an indirect approach in which the
frame is subjected to an arbitrary known joint translation Δ’ caused
by an unknown load Q acting at the location in the direction of R.
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Assuming that the joints C and D of the frame are clamped against
rotation as shown in figure on next slide, FEMs due to the
translation Δ’ are given by
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In which negative sign have been assign to the FEMs for the
columns, because these moments must act in the clockwise
direction, as shown.

Instead of arbitrarily assuming a numerical value for Δ’ to compute
the FEMs, it is usually more convenient to assume a numerical
value for one of the FEMs, evaluate Δ’ from the expression of that
FEM, and use the value of Δ’ to compute the remaining FEMs.
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Thus, we arbitrarily assume the FEMAC to be -50 kN.m

by solving for Δ’, we obtain

by substituting this value of Δ’ into the expressions for FEMBD and
FEMDB, we determine the consistent values of these moments to
be

These FEMs are then distributed by the usual MD process, to
determine the MEMs MQ caused by the yet unknown load Q.
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To evaluate the magnitude of Q that corresponds to these MEMs,
we first calculate shears at the lower ends of the columns by
considering their moment equilibrium and then apply the equation
of equilibrium in the horizontal direction to the entire frame
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which indicates that the moments MQ computed are caused by a
lateral load Q = 34.41 kN.

Since the moments are linearly proportional to the magnitude of
the load, the desired moment MR due to the lateral load R = 2.06
kN must be equal to the moment MQ multiplied by the ratio R/Q =
2.06/34.41.

• Actual Member End Moments

The actual MEMs , M, can now be determined by algebraically
summing the MEMs MO and 2.06/34.41 times the MEMs MQ.
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Example 3

• Determine the member end moments and reactions for the frame
shown by the moment-distribution method.
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Solution

• Distribution Factors

At joint C
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Solution

• Distribution Factors

At joint D
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MEMs due to an Arbitrary Sidesway Δ’

Since no external loads are applied to the members of the frame,
the MEMs MO in the frame restrained against sidesway will be
zero.

To determine the MEMs M due to the 30-k lateral load, we subject
the frame to an arbitrary known horizontal translation Δ’ at joint C.

Figure on the next slide shows a qualitative deflected shape of the
frame with all joints clamped against rotation and subjected to the
horizontal displacement Δ’ at joint C.
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MEMs due to an Arbitrary Sidesway Δ’

Note that, since the frame members are assumed to be
inextensible and deformations are assumed to be small, an end of
a member can translate only in a direction perpendicular to the
member.

From this figure, we can see that the relative translation ΔAC

between the ends of members AC in the direction perpendicular to
the member can be expressed in terms of the joint translation Δ’ as
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MEMs due to an Arbitrary Sidesway Δ’

Similarly, the relative translation for members CD and BD are given
by

The FEMs due to the relative translation are
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MEMs due to an Arbitrary Sidesway Δ’

in which the FEMs for members AC and BD are CCW (positive),
whereas those for member CD are CW (negative).

If we arbitrarily assume that

then

and therefore
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The FEMs are distributed by the MD process to determine the
MEMs MQ.

To determine the magnitude of the load Q that corresponds to the
MEMs MQ we first calculate the shears at the ends of the girder CD
by considering the moment equilibrium of the free body of the
girder as shown.
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The girder shears (5.58 k) thus obtained are then applied to the
free bodies of the inclined members AC and BD.

Next, we apply the equations of moment equilibrium to members
AC and BD to calculate the horizontal forces at the lower ends of
these members.
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The magnitude of Q can now be determined by considering the
equilibrium of horizontal forces acting on the entire frame as
shown below
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Actual MEMs

The actual MEMs, M, due to the 30-k lateral load can now be
evaluated by multiplying the moments MQ computed in Table by
the ratio 30/Q=30/19.49:
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Member End Forces
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Support Reactions
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