Method of Least Work

Method of Least Work / Castigliano’s Second Theorem

- Force Method
- Compatibility equations are established by using the Castigliano's second theorem, instead of by deflection superposition as in method of consistent deformations.
- Let us consider a statically indeterminate beam with unyielding supports subjected to an external loading w.

Method of Least Work / Castigliano's Second Theorem

- Suppose that we select the vertical reaction B_{y} at the interior support B to be the redundant.
- By treating the redundant as an unknown load applied to the beam along with the prescribed loading w, an expression for the strain energy can be written in terms of known load w and the unknown redundant B_{y} as

$$
U=f\left(w, B_{y}\right)
$$

Method of Least Work / Castigliano's Second Theorem

- Above equation indicates symbolically that the strain energy for the beam is expressed as a function of the known external load w and the unknown redundant B_{y}.

Castigliano's second theorem
"The partial derivative of the strain energy with respect to a force equals the deflection of the point of the application of the force along its line of action".

Method of Least Work / Castigliano’s Second Theorem

- Since the deflection at the point of application of the redundant B_{y} is zero, by applying the Castigliano's second theorem, we can write

$$
\frac{\partial U}{\partial B_{y}}=0
$$

- It should be realize that this equation represents the compatibility equation in the direction of redundant B_{y}, and it can be solved for the redundant.
- This equation states that the first partial derivative of the strain energy with respect to the redundant must be equal to zero.

Method of Least Work / Castigliano’s Second Theorem

- This implies that for the value of the redundant that satisfies the equations of equilibrium and compatibility, the strain energy of the structure is a minimum or maximum.
- Since for a linearly elastic, there is no maximum value of strain energy, because it can be increased indefinitely by increasing the value of the redundant, we conclude that for the true value of the redundant the strain energy must be a minimum.

Method of Least Work / Castigliano's Second Theorem

- This conclusion is known as Principle of Least Work.
"The magnitudes of the redundants of a statically indeterminate structure must be such that the strain energy stored in the structure is a minimum (i.e., the internal work done is the least)."
- If a structure is indeterminate to the nth degree, the n redundants are selected, and the strain energy for the structure is expressed in terms of the known external loading and the n unknown redundants as

Method of Least Work / Castigliano's Second Theorem

- If a structure is indeterminate to the nth degree, the n redundants are selected, and the strain energy for the structure is expressed in terms of the known external loading and the n unknown redundants as

$$
U=f\left(w, R_{1}, R_{2}, R_{3}, \ldots, R_{n}\right)
$$

in which w represents all the known loads and R_{1}, R_{2}, \ldots, R_{n} denote the n redundants.

Method of Least Work / Castigliano's Second Theorem

- Next, the principle of least work is applied separately for each redundant by partially differentiating the strain energy expressions with respect to each of the redundants and by setting each partial derivative equal to zero; that is,

$$
\frac{\partial U}{\partial R_{1}}=0, \frac{\partial U}{\partial R_{2}}=0, \cdots, \frac{\partial U}{\partial R_{n}}=0
$$

which represents a system of n simultaneous equations in terms of n redundants and can be solved for the redundants.

Method of Least Work / Castigliano's Second Theorem

- The strain energy of a beam subjected only to bending can be expressed as

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{1}
\end{equation*}
$$

- According to the principle of least work, the partial derivative of strain energy with respect to B_{y} must be zero; that is,

$$
\begin{equation*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

Example 1

Determine the reactions for the beam shown in Fig., by the method of least work. $E /$ is constant.

Solution

- The beam is supported by four reactions, so its degree of indeterminacy is equal to 1 .
- The vertical reaction B_{y}, at the roller support B, is selected as the redundant.

Solution

- We will evaluate the magnitude of the redundant by minimizing the strain energy of the beam with respect to B_{y}.
- The strain energy of a beam subjected only to bending can be expressed as

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{1}
\end{equation*}
$$

Solution

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{1}
\end{equation*}
$$

- According to the principle of least work, the partial derivative of strain energy with respect to B_{y} must be zero; that is,

$$
\begin{equation*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

- Using the x coordinate shown in Fig, we write the equation for bending moment, M, in terms of B_{y}, as

Solution

- Next, we partially differentiate the expression for M w.r.t B_{y} to obtain

$$
\frac{\partial M}{\partial B_{y}}=x
$$

Solution

- By substituting the expression for M and $\partial M / \partial B_{y}$ into Eq. (2), we write

$$
\frac{1}{E I}\left[\int_{0}^{30} x\left(B_{y} x-0.8 x^{2}\right) d x\right]=0
$$

$$
\begin{equation*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

$$
\frac{\partial M}{\partial B_{y}}=x \quad M=B_{y}(x)-\frac{1.6 x^{2}}{2}
$$

By integrating we, obtain
$9,000 B_{y}-162,000=0$
$B_{y}=18 k \uparrow$

Solution

- To determine the remaining reactions of the indeterminate beam, we apply the equations of equilibrium
$+\rightarrow \sum F_{x}=0$

$$
A_{x}=0 \quad \text { ANS }
$$

$+\uparrow \sum F_{y}=0$
$A_{y}-1.6(30)+18=0$
$A_{y}=30 k \uparrow$ ANS
$+\zeta \sum M_{A}=0$
$M_{A}-1.6(30)(15)+18(30)=0$
$M_{A}=180 k-f t$ JANS

Solution

30 k

Shear Diagram
18 k

Moment Diagram

Example 2

Determine the reactions for the two-span continuous beam shown in Fig., by the method of least work. El is constant.

Solution

- The beam is supported by four reactions. Since there are only three equilibrium equations, the degree of indeterminacy of the beam is equal to 1.
- Let us select the reaction B_{y} to be the redundant.

Solution

- The magnitude of the redundant will be determined by minimizing the strain energy of the beam with respect to B_{y}.
- The strain energy of a beam subjected only to bending is

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{1}
\end{equation*}
$$

Solution

- According to the Principle of Least Work.

$$
\begin{equation*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

- Before we can obtain the equations for bending moments, M , we must express the reactions at the supports A and D of the beam in terms of the redundant B_{y}.

Solution

- Applying the three equilibrium equations, we write

$$
\begin{array}{ll}
+\rightarrow \sum F_{x}=0 & A_{x}=0 \quad \text { ANS } \\
+\complement \sum M_{D}=0 & \\
-A_{y}(20)+30(10)(15)-B_{y}(10)+80(5)=0 & A_{y}=245-0.5 B_{y} \\
+\uparrow \sum F_{y}=0 & \tag{3}\\
\left(245-0.5 B_{y}\right)-30(10)+B_{y}-80+D_{y}=0 & D_{y}=135-0.5 B_{y}
\end{array}
$$

Solution

- To determine the equations for bending moments, M , the beam is divided into three segments, $A B, B C$, and $C D$.
- The x coordinates used for determining the equations are shown in Figure.
- The bending moment equations, in terms of B_{y}, are tabulated in Table on next slide.

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} B_{y}$
$A B$	A	$0-10$	$\left(245-0.5 B_{y}\right) x-15 x^{2}$	$-0.5 x$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{B}_{\boldsymbol{y}}$
$A B$	A	$0-10$	$\left(245-0.5 B_{y}\right) x-15 x^{2}$	$-0.5 x$
DC	D	$0-5$	$\left(135-0.5 B_{y}\right) x$	$-0.5 x$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial B _ { y }}$
$A B$	A	$0-10$	$\left(245-0.5 B_{v}\right) x-15 x^{2}$	$-0.5 x$
$D C$	D	$0-5$	$\left(135-0.5 B_{y}\right) x$	$-0.5 x$
$C B$	D	$5-10$	$\left(135-0.5 B_{\gamma}\right) x-80(x-5)$	$-0.5 x$

Solution

- By substituting the expressions for M and $\partial M / \partial B_{y}$ into Eq. (2), we write

$$
\begin{aligned}
& \frac{1}{E I} \int_{0}^{10}(-0.5 x)\left(245 x-0.5 B_{y} x-15 x^{2}\right) d x+ \\
& \frac{1}{E I} \int_{0}^{5}(-0.5 x)\left(135 x-0.5 B_{y} x\right) d x+ \\
& \frac{1}{E I} \int_{5}^{10}(-0.5 x)\left(55 x-0.5 B_{y} x+400\right) d x=0
\end{aligned}
$$

- By integrating, we obtain
$-40,416.667+166.667 B_{y}=0 \quad \Rightarrow \quad B_{y}=242.5 k N \uparrow$

Solution

- By substituting the value of B_{y} into Eqs. (3) and (4), respectively, we determine the vertical reactions at supports A and D.

$$
\begin{aligned}
A_{y} & =123.75 \mathrm{kN} \uparrow \\
D_{y} & =13.75 \mathrm{kN} \uparrow
\end{aligned}
$$

123.75 kN

Example 3

Determine the reactions for the beam shown in Fig., by the method of least work. $E /$ is constant.

Solution

The beam is supported by four reactions. The equations of equilibrium is three, so the beam is indeterminate to the first degree.

- Let us select the reaction B_{y} to be the redundant.

Solution

- The magnitude of the redundant will be determined by minimizing the strain energy of the beam with respect to B_{y}.
- The strain energy of a beam subjected only to bending is

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{1}
\end{equation*}
$$

Solution

- According to the Principle of Least Work.

$$
\begin{equation*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

- To determine the equations for bending moments, M , the beam is divided into three segments, $A B, B C$, and $C D$.
- The x coordinates used for determining the equations are shown in Figure on next slide.

Solution

- The bending moment equations, in terms of B_{y}, are tabulated in Table.

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{B}_{\boldsymbol{y}}$
AB	A	$0-2$	$-5 x$	0

Solution

- The bending moment equations, in terms of B_{y}, are tabulated in Table.

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{B}_{\boldsymbol{y}}$
AB	A	$0-2$	$-5 x$	0
BC	A	$2-6$	$-5 x+B_{y}(x-2)$	$x-2$

Solution

- The bending moment equations, in terms of B_{y}, are tabulated in Table.

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial B _ { y }}$
$A B$	A	$0-2$	$-5 x$	0
BC	A	$2-6$	$-5 x+B_{y}(x-2)$	$x-2$
CD	A	$6-10$	$-5 x+B_{y}(x-2)-30(x-6)$	$x-2$

Solution

- By substituting the expressions for M and $\partial M / \partial B_{y}$ into Eq. (2), we write

$$
\begin{gather*}
\frac{\partial U}{\partial B_{y}}=\int_{0}^{L} \frac{\partial M}{\partial B_{y}} \frac{M}{E I} d x=0 \tag{2}\\
\frac{1}{E I} \int_{0}^{2}(-5 x)(0) d x+\frac{1}{E I} \int_{2}^{6}\left(-5 x+B_{y}(x-2)(x-2)\right) d x+ \\
\frac{1}{E I} \int_{6}^{10}\left(-5 x+B_{y}(x-2)-30(x-6)(x-2)\right) d x=0
\end{gather*}
$$

- By integrating, we obtain
$-2773.327+170.66 B_{y}=0 \quad \Rightarrow \quad B_{y}=16.25 k N \uparrow \quad$ ANS

Solution

- By using the equations of equilibrium, the remaining reactions are find as

$$
\begin{array}{lc}
D_{y}=18.8 k N \uparrow & \text { ANS } \\
D_{x}=0 & \text { ANS } \\
\left.M_{D}=40 k N-m\right) & \text { ANS }
\end{array}
$$

Shear Diagram

Example 4

Determine the reactions for the frame shown in Fig., by the method of least work. $E /$ is constant.

Solution

The structure is indeterminate to the $2^{\text {nd }}$ degree. It has two redundant reactions.

Solution

Let us choose R_{1} and R_{2}, the reactions at A, to be the redundants.

According to the principle of least work

$$
\begin{align*}
& \frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0 \tag{1}\\
& \frac{\partial U}{\partial R_{2}}=\int_{0}^{L} \frac{\partial M}{\partial R_{2}} \frac{M}{E I} d x=0 \tag{2}
\end{align*}
$$

The expressions for moment and its derivative needed to solve Eq. (1) \& (2) are listed in the table on next slide.

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} M / \partial R_{1}$	$\boldsymbol{\partial} M / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
$A B$	A	$0-5$	$-R_{2} x$	0	$-x$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
$A B$	A	$0-5$	$-R_{2} x$	0	$-x$
$B C$	B	$0-5$	$R_{1} x-5 R_{2}$	x	-5

Solution

| Segment | Origin | Limits | \boldsymbol{M} | $\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$ | $\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :--- | :--- | :---: | :---: |
| AB | A | $0-5$ | $-R_{2} \mathrm{x}$ | 0 | -x |
| BC | B | $0-5$ | $R_{1} \mathrm{x}-5 \mathrm{R}_{2}$ | x | -5 |
| CD | B | $5-10$ | $R_{1} \mathrm{x}-5 \mathrm{R}_{2}-40 \mathrm{x}+200$ | x | -5 |

Solution

Substitute these values into Eq. (1) \& (2).

$$
\begin{equation*}
\frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0 \quad \text { (1), } \quad \frac{\partial U}{\partial R_{2}}=\int_{0}^{L} \frac{\partial M}{\partial R_{2}} \frac{M}{E I} d x=0 \tag{2}
\end{equation*}
$$

| Segment | Origin | Limits | \boldsymbol{M} | $\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$ | $\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$ |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: |
| AB | A | $0-5$ | $-R_{2} \mathrm{x}$ | 0 | -x |
| BC | B | $0-5$ | $\mathrm{R}_{1} \mathrm{x}-5 \mathrm{R}_{2}$ | x | -5 |
| CD | B | $5-10$ | $\mathrm{R}_{1} \mathrm{x}-5 \mathrm{R}_{2}-40 \mathrm{x}+200$ | x | -5 |

$$
\begin{aligned}
& \int_{0}^{5}\left(R_{1} x^{2}-5 R_{2} x\right) d x+\int_{5}^{10}\left(R_{1} x^{2}-5 R_{2} x-40 x^{2}+200 x\right) d x=0 \\
& \int_{0}^{5} R_{2} x^{2} d x+\int_{0}^{5}\left(-5 R_{1} x+25 R_{2}\right) d x+\int_{5}^{10}\left(-5 R_{1} x+25 R_{2}+200 x-1000\right) d x=0
\end{aligned}
$$

Solution

From which

$$
\begin{aligned}
333 R_{1}-250 R_{2}-4167 & =0 \\
-250 R_{1}+292 R_{2}+2500 & =0
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{1}=17.0 \mathrm{kN} \\
& R_{2}=6.0 \mathrm{kN}
\end{aligned}
$$

ANS
ANS

Solution

Solution

$$
\uparrow_{R_{1}=17 \mathrm{kN}}
$$

40 kN

Solution
$M_{D}=60 \mathrm{kN}-\mathrm{m}$

$\mathrm{R}_{2}=6 \mathrm{kN} \longrightarrow$ A A

$$
R_{1}=17 \mathrm{kN}
$$

Moment Diagram

Example 5

Determine the reactions for the frame shown in Fig., by the method of least work. $E /$ is constant.

Solution

The structure is indeterminate to the first degree. It has single redundant reaction.

Solution

Let us choose R_{1}, the reaction at D, to be the redundant.

Solution

According to the principle of least work

$$
\begin{equation*}
\frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0 \tag{1}
\end{equation*}
$$

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$
$D C$	D	$0-4$	0	0

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial M / \partial R _ { \mathbf { 1 } }}$
$D C$	D	$0-4$	0	0
$C E$	C	$0-1.5$	$R_{1} \cdot x$	x

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$
DC	D	$0-4$	0	0
CE	C	$0-1.5$	$R_{1} \cdot \mathrm{x}$	x
EB	C	$1.5-3$	$\mathrm{R}_{1} \cdot \mathrm{x}-10(\mathrm{x}-1.5)$	x

Solution

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$
DC	D	$0-4$	0	0
CE	C	$0-1.5$	$R_{1} \cdot x$	x
EB	C	$1.5-3$	$\mathrm{R}_{1} \cdot x-10(x-1.5)$	x
BF	B	$0-2$	$3 R_{1}-10(1.5)$	3
FA	F	$0-2$	$3 R_{1}-10(1.5)-10 x$	3

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$
DC	D	$0-4$	0	0
CE	C	$0-1.5$	$R_{1} \cdot x$	x
EB	C	$1.5-3$	$\mathrm{R}_{1} \cdot \mathrm{x}-10(\mathrm{x}-1.5)$	x
BF	B	$0-2$	$3 \mathrm{R}_{1}-10(1.5)$	3
FA	F	$0-2$	$3 \mathrm{R}_{1}-10(1.5)-10 \mathrm{x}$	3

$$
\begin{aligned}
& \frac{1}{E I} \int_{0}^{1.5} R_{1} x^{2} d x+\frac{1}{E I} \int_{1.5}^{3.0}\left[\left(R_{1}-10\right) x+15\right] x d x+\frac{1}{E I} \int_{0}^{2}\left(9 R_{1}-45\right) d x+\frac{1}{E I} \int_{0}^{2}\left(9 R_{1}-45-30 x\right) d x=0 \\
& R_{1}=5.958 k N \cong 6 \mathrm{kN}
\end{aligned}
$$

Solution

Solution

Solution

Example 6

Determine the reactions for the frame shown in Fig., by the method of least work. $E /$ is constant.

Solution

The structure is indeterminate to the second degree. It has two redundant reactions.

Solution

Let us choose R_{1}, R_{2}, the reaction at D, to be the redundant.

Solution

According to the Principle of Least Work

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} M / \partial R_{1}$	$\boldsymbol{\partial} M / \partial R_{\mathbf{2}}$
$D C$	D	$0-4$	$-R_{2} \cdot x$	0	$-x$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
$D C$	D	$0-4$	$-R_{2} \cdot x$	0	$-x$
$C E$	C	$0-1.5$	$-4 R_{2}+R_{1} \cdot x$	x	-4

Solution

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
DC	D	$0-4$	$-R_{2} \cdot x$	0	-x
CE	C	$0-1.5$	$-4 R_{2}+R_{1} \cdot x$	x	-4
EB	C	$1.5-3.0$	$-4 R_{2}+R_{1} \cdot x-10(\mathrm{x}-1.5)$	x	-4
FB	A	$2-4$	$-35+3 R_{1}-\left(\mathrm{R}_{2}-10\right) \mathrm{x}-$		
$10(\mathrm{x}-2)$	3	-x	74		

Solution

 n

 n}

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
DC	D	$0-4$	$-R_{2} \cdot x$	0	-x
CE	C	$0-1.5$	$-4 R_{2}+R_{1} \cdot x$	x	-4
EB	C	$1.5-3.0$	$-4 R_{2}+R_{1} \cdot x-10(x-1.5)$	x	-4
FB	A	$2-4$	$-35+3 R_{1}-\left(R_{2}-10\right) x-10(x-2)$	3	$-x$
AF	A	$0-2$	$-35+3 R_{1}-\left(R_{2}-10\right) x$	3	$-x$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
DC	D	$0-4$	$-R_{2} \cdot x$	0	$-x$
CE	C	$0-1.5$	$-4 R_{2}+R_{1} \cdot x$	x	-4
EB	C	$1.5-3.0$	$-4 R_{2}+R_{1} \cdot x-10(x-1.5)$	x	-4
FB	A	$2-4$	$-35+3 R_{1}-\left(R_{2}-10\right) x-10(x-2)$	3	$-x$
AF	A	$0-2$	$-35+3 R_{1}-\left(R_{2}-10\right) x$	3	$-x$

$$
\begin{aligned}
& \frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0 \\
& \frac{1}{E I} \int_{0}^{1.5}\left(-4 R_{2}+R_{1} x\right) x d x+\frac{1}{E I} \int_{1.5}^{3.0}\left[-4 R_{2}+R_{1} x-10(x-1.5)\right] x d x \\
& +\frac{1}{E I} \int_{2}^{4}\left(-35+3 R_{1}-\left(R_{2}-10\right) x-10(x-2)\right) 3 d x+\frac{1}{E I} \int_{0}^{2}\left(-35+3 R_{1}-\left(R_{2}-10\right) x\right) 3 d x=0 \\
& 45 R_{1}-42 R_{2}-268.125=0
\end{aligned}
$$

Solution

Segment	Origin	Limits	\boldsymbol{M}	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{\partial} \boldsymbol{M} / \boldsymbol{\partial} \boldsymbol{R}_{\mathbf{2}}$
DC	D	$0-4$	$-R_{2} \cdot x$	0	-x
CE	C	$0-1.5$	$-4 R_{2}+R_{1} \cdot x$	x	-4
EB	C	$1.5-3.0$	$-4 R_{2}+R_{1} \cdot x-10(\mathrm{x}-1.5)$	x	-4
FB	A	$2-4$	$-35+3 R_{1}-\left(R_{2}-10\right) \mathrm{x}-10(\mathrm{x}-2)$	3	-x
AF	A	$0-2$	$-35+3 R_{1}-\left(R_{2}-10\right) \mathrm{x}$	3	-x

$$
\frac{\partial U}{\partial R_{2}}=\int_{0}^{L} \frac{\partial M}{\partial R_{2}} \frac{M}{E I} d x=0
$$

$$
\frac{1}{E I} \int_{0}^{4}\left(-R_{2} x\right)(-x) d x+\frac{1}{E I} \int_{0}^{1.5}\left(-4 R_{2}+R_{1} x\right)(-4) d x+\frac{1}{E I} \int_{1.5}^{3.0}\left[-4 R_{2}+R_{1} x-10(x-1.5)\right](-4) d x
$$

$$
+\frac{1}{E I} \int_{2}^{4}\left(-35+3 R_{1}-\left(R_{2}-10\right) x-10(x-2)\right)(-x) d x+\frac{1}{E I} \int_{0}^{2}\left(-35+3 R_{1}-\left(R_{2}-10\right) x\right)(-x) d x=0
$$

$$
-42 R_{1}+90.67 R_{2}+178.33=0
$$

Solution

$$
\begin{aligned}
45 R_{1}-42 R_{2}-268.125 & =0 \\
-42 R_{1}+90.67 R_{2}+178.33 & =0
\end{aligned}
$$

solving simultaneously, we have

$$
\begin{aligned}
& R_{1}=7.2608 \cong 7.30 \mathrm{kN} \\
& R_{2}=1.3964 \cong 1.4 \mathrm{kN}
\end{aligned}
$$

Solution

Solution

Solution

Solution

Example 7

Determine the reactions for the frame shown in Fig., by the method of least work. $E /$ is constant.

Solution

The structure is determinate to the third degree. It has three redundant reactions.

Solution

Let us choose R_{1}, R_{2}, R_{3}, the reaction at D, to be the redundant.

Solution

According to the Principle of Least Work

$$
\begin{aligned}
& \frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0 \\
& \frac{\partial U}{\partial R_{2}}=\int_{0}^{L} \frac{\partial M}{\partial R_{2}} \frac{M}{E I} d x=0 \\
& \frac{\partial U}{\partial R_{3}}=\int_{0}^{L} \frac{\partial M}{\partial R_{3}} \frac{M}{E I} d x=0
\end{aligned}
$$

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{\mathbf{2}}$	$\partial M / \partial R_{\mathbf{3}}$
$D C$	D	$0-4$	$-R_{2} \cdot x-R_{3}$	0	$-x$	-1

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{2}$	$\partial M / \partial R_{\mathbf{3}}$
$D C$	D	$0-4$	$-R_{2} \cdot x-R_{3}$	0	$-x$	-1
$C E$	C	$0-1.5$	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}$	x	-4	-1

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{\mathbf{2}}$	$\partial M / \partial R_{\mathbf{3}}$
$D C$	D	$0-4$	$-R_{2} \cdot x-R_{3}$	0	$-x$	-1
$C E$	C	$0-1.5$	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}$	x	-4	-1
$E B$	C	$1.5-3.0$	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}-10(x-1.5)$	x	-4	-1

Solution
 \section*{n}

Segment	Origin	Limits	\boldsymbol{M}	$\partial M / \partial R_{1}$	$\partial M / \partial R_{\mathbf{2}}$	$\partial M / \partial R_{\mathbf{3}}$
$D C$	D	$0-4$	$-R_{2} \cdot x-R_{3}$	0	$-x$	-1
CE	C	$0-1.5$	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}$	x	-4	-1
EB	C	$1.5-3.0$	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}-10(x-1.5)$	x	-4	-1
FB	A	$2-4$	$-\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right)$	3	$-x$	-1
			$-10(x-2)$			

Solution
 n

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{2}$	$\partial M / \partial R_{3}$
DC	D	0-4	$-R_{2} \cdot x-R_{3}$	0	-x	-1
CE	C	0-1.5	$\mathrm{R}_{1} \cdot \mathrm{x}-\mathrm{R}_{2} \cdot 4-\mathrm{R}_{3}$	x	-4	-1
EB	C	1.5-3.0	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}-10(x-1.5)$	\times	-4	-1
FB	A	2-4	$\begin{gathered} -\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right) \\ -10(x-2) \end{gathered}$	3	-x	-1
AF	A	0-2	$-\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right)$	3	-x	-1^{1}

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{2}$	$\partial M / \partial R_{3}$
DC	D	0-4	$-R_{2} \cdot \mathrm{X}-\mathrm{R}_{3}$	0	-x	-1
CE	C	0-1.5	$\mathrm{R}_{1} \cdot \mathrm{x}-\mathrm{R}_{2} .4-\mathrm{R}_{3}$	X	-4	-1
EB	C	1.5-3.0	$R_{1} \cdot x-R_{2} .4-R_{3}-10(x-1.5)$	X	-4	-1
FB	A	2-4	$\begin{gathered} -\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right) \\ -10(x-2) \end{gathered}$	3	-x	-1
AF	A	0-2	$-\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right)$	3	-X	-1
$\frac{\partial U}{\partial R_{1}}=\int_{0}^{L} \frac{\partial M}{\partial R_{1}} \frac{M}{E I} d x=0$						
$+\frac{1}{E I} \int_{2}^{4}\left(\left(-R_{2}+10\right) x-\left(+35-3 R_{1}+R_{3}\right)-10(x-2)\right) 3 d x+\frac{1}{E I} \int_{0}^{2}\left(\left(-R_{2}+10\right) x-35+3 R_{1}-R_{3}\right) 3 d x=0$						

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{2}$	$\partial M / \partial R_{3}$
DC	D	0-4	$-R_{2} \cdot \mathrm{X}-\mathrm{R}_{3}$	0	-X	-1
CE	C	0-1.5	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}$	x	-4	-1
EB	C	1.5-3.0	$R_{1} \cdot x-R_{2} \cdot 4-R_{3}-10(x-1.5)$	x	-4	-1
FB	A	2-4	$\begin{gathered} -\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right) \\ -10(x-2) \end{gathered}$	3	-x	-1
AF	A	0-2	$-\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right)$	3	-X	-1
$\frac{\partial U}{\partial R_{2}}=\int_{0}^{L} \frac{\partial M}{\partial R_{2}} \frac{M}{E I} d x=0$						
$\begin{aligned} & \frac{1}{E I} \int_{0}^{4}\left(-R_{2}\right. \\ & +\frac{1}{E I} \int_{2}^{4}((-) \end{aligned}$	$\begin{aligned} & \left.R_{3}\right)(-x) c \\ & +10) x- \end{aligned}$	$\frac{1}{E I} \int_{0}^{4}\left(-R_{2} x-R_{3}\right)(-x) d x+\frac{1}{E I} \int_{0}^{1.5}\left(R_{1} x-R_{2} 4-R_{3}\right)(-4) d x+\frac{1}{E I} \int_{1.5}^{3.0}\left[R_{1} x-R_{2} 4-R_{3}-10(x-1.5)\right](-4) d x$				

Solution

Segment	Origin	Limits	M	$\partial M / \partial R_{1}$	$\partial M / \partial R_{2}$	$\partial M / \partial R_{3}$
DC	D	0-4	$-R_{2} \cdot x-R_{3}$	0	-x	-1
CE	C	0-1.5	$\mathrm{R}_{1} \cdot \mathrm{x}-\mathrm{R}_{2} .4-\mathrm{R}_{3}$	x	-4	-1
EB	C	1.5-3.0	$R_{1}, x-R_{2} .4-R_{3}-10(x-1.5)$	X	-4	-1
FB	A	2-4	$\begin{gathered} -\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right) \\ -10(x-2) \end{gathered}$	3	-x	-1
AF	A	0-2	$-\left(R_{2}-10\right) x-\left(+35-3 R_{1}+R_{3}\right)$	3	-x	-1
$\frac{\partial U}{\partial R_{3}}=\int_{0}^{L} \frac{\partial M}{\partial R_{3}} \frac{M}{E I} d x=0$						
$+\frac{1}{E I} \int_{2}^{4}\left(\left(-R_{2}+10\right) x-\left(+35-3 R_{1}+R_{3}\right)-10(x-2)\right)(-1) d x+\frac{1}{E I} \int_{0}^{2}\left(\left(-R_{2}+10\right) x-35+3 R_{1}-R_{3}\right)(-1) d x=0$						

Solution

$$
\begin{align*}
45 R_{1}-42 R_{2}-16.5 R_{3}-268.125 & =0 \tag{1}\\
-42 R_{1}+90.67 R_{2}+28 R_{3}+178.33 & =0 \tag{2}\\
-16.5 R_{1}+28 R_{2}+11 R_{3}+91.25 & =0 \tag{3}
\end{align*}
$$

By solving simultaneously, we have

$$
\begin{aligned}
& R_{1}=6.48 \mathrm{kN} \cong 6.50 \uparrow \\
& R_{2}=2.77 \mathrm{kN} \cong 2.80 \leftarrow \\
& \left.R_{3}=-5.63 \mathrm{kN}-m \cong 5.70 \mathrm{kN}-\mathrm{m}\right)
\end{aligned}
$$

Solution

Solution

Solution

