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Method of Least Work / Castigliano’s Second Theorem

• Force Method

• Compatibility equations are established by using the
Castigliano’s second theorem, instead of by deflection

i i i h d f i d f isuperposition as in method of consistent deformations.

• Let us consider a statically indeterminate beam with
i ldi t bj t d t t l l diunyielding supports subjected to an external loading w.

w

C
BA
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Method of Least Work / Castigliano’s Second Theorem

C

w

BA

By

• Suppose that we select the vertical reaction By at the
interior support B to be the redundant.

• By treating the redundant as an unknown load applied to
the beam along with the prescribed loading w, an

i f h i b i iexpression for the strain energy can be written in terms
of known load w and the unknown redundant By as

3
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Method of Least Work / Castigliano’s Second Theorem

• Above equation indicates symbolically that the strain
energy for the beam is expressed as a function of the
known external load w and the unknown redundant By.

Castigliano’s second theorem

“The partial derivative of the strain energy with respect
to a force equals the deflection of the point of the
application of the force along its line of action”application of the force along its line of action .
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Method of Least Work / Castigliano’s Second Theorem

• Since the deflection at the point of application of the
redundant By is zero, by applying the Castigliano’s second
theorem, we can write

∂U 0=
∂
∂

yB
U

• It should be realize that this equation represents the
compatibility equation in the direction of redundant By,
and it can be solved for the redundantand it can be solved for the redundant.

• This equation states that the first partial derivative of the
strain energy with respect to the redundant must bestrain energy with respect to the redundant must be
equal to zero.
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Method of Least Work / Castigliano’s Second Theorem

• This implies that for the value of the redundant that
satisfies the equations of equilibrium and compatibility,
the strain energy of the structure is a minimum or
maximummaximum.

Si f li l l ti th i i l f• Since for a linearly elastic, there is no maximum value of
strain energy, because it can be increased indefinitely by
increasing the value of the redundant we conclude thatincreasing the value of the redundant, we conclude that
for the true value of the redundant the strain energy
must be a minimum.
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Method of Least Work / Castigliano’s Second Theorem

• This conclusion is known as Principle of Least Work.

“The magnitudes of the redundants of a statically
indeterminate structure must be such that the strain
energy stored in the structure is a minimum (i.e., the
i t l k d i th l t) ”internal work done is the least).”

If i i d i h h d h• If a structure is indeterminate to the nth degree, the n
redundants are selected, and the strain energy for the
structure is expressed in terms of the known externalstructure is expressed in terms of the known external
loading and the n unknown redundants as
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Method of Least Work / Castigliano’s Second Theorem

• If a structure is indeterminate to the nth degree, the n
redundants are selected, and the strain energy for the
structure is expressed in terms of the known external
loading and the n unknown redundants asloading and the n unknown redundants as

( )nRRRRwfU ,....,,,, 321=

in which w represents all the known loads and R1, R2,…,
R d t th d d tRn denote the n redundants.
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Method of Least Work / Castigliano’s Second Theorem

• Next, the principle of least work is applied separately for
each redundant by partially differentiating the strain
energy expressions with respect to each of the
redundants and by setting each partial derivative equalredundants and by setting each partial derivative equal
to zero; that is,

0 ,  ,0 ,0
21

=
∂
∂

=
∂
∂

=
∂
∂

nR
U

R
U

R
U

L

which represents a system of n simultaneous equations
in terms of n redundants and can be solved for thein terms of n redundants and can be solved for the
redundants.
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Method of Least Work / Castigliano’s Second Theorem

• The strain energy of a beam subjected only to bending
can be expressed as

2ML

∫ (1)                         
20

 dx
EI

MU
L

∫=

• According to the principle of least work, the partial
derivative of strain energy with respect to By must be

h izero; that is,

(2)0dxMMU L

∫ =
∂

=
∂

10

(2)                        0
0

dx
EIBB yy

∫ =
∂

=
∂



Example 1

Determine the reactions for the beam shown in Fig., by
the method of least work. EI is constant.

1.6 k/ft

A B

30 ft
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Solution

1.6 k/ft

A
BAx

MA

30 ft

ByAy

MA

• The beam is supported by four reactions, so its degree ofpp y , g
indeterminacy is equal to 1.

• The vertical reaction By, at the roller support B, isy
selected as the redundant.
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Solution

-

1.6 k/ft

A
BAx

f

ByAy

MA

• We will evaluate the magnitude of the redundant by

30 ft

minimizing the strain energy of the beam with respect to
By.

• The strain energy of a beam subjected only to bending
can be expressed as

2ML

∫
13

(1)                        
20

dx
EI

MU
L

∫=



Solution

-

2ML

∫ (1)                                  
20

dx
EI

MU ∫=

• According to the principle of least work, the partial
derivative of strain energy with respect to By must be

h izero; that is,

(2)0dxMMU L

∫ =
∂

=
∂ (2)                        0

0
dx

EIBB yy
∫ =
∂

=
∂

• Using the x coordinate shown in Fig, we write the
equation for bending moment, M, in terms of By, as
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Solution

-

1.6 k/ft

A
BAx

MA

30 ft

ByAy

x

30 ft

6.1)(
2xxBM

• Next, we partially differentiate the expression for M w.r.t

2
)(xBM y −=

, p y p
By to obtain

xM
=

∂

15

x
By

=
∂



Solution

• By substituting the expression for M and ∂M/∂By into Eq.
(2), we write

( )1 30 2 ∫
(2)       0

0
 dx

EI
M

B
M

B
U L

yy
∫ =
∂
∂

=
∂
∂

,
2
6.1)(

2xxBM y −=x
B
M

y

=
∂
∂( ) 08.01 30

0

2 =



 −∫ dxxxBx

EI y

By integrating we, obtain

00001620009 =B 0000,162000,9 =−yB

18 ↑= kB

16

       18 ↑kBy



Solution 1.6 k/ft

A
BAx

MA

• To determine the remaining reactions of the

By = 18 kAy

indeterminate beam, we apply the equations of
equilibrium

ANS       0                                                                 0 ==∑→+ xx AF

( ) ANS3001830610 ↑∑↑ kAAF ( ) ANS  30                  01830610 ↑==+−=∑↑+ k A   .      AF yyy

( )( ) ( ) ANS   180030181530610    ftk      M.      MM AAA −==+−=∑+

17
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Solution
1 6 k/ft

A
B

1.6 k/ft

Ax = 0
A

By = 18 kAy = 30 k

x

MA = 180 k‐ft

30 k

hShear Diagram

18 k

101.3 k‐ft

Moment Diagram

18

180 k‐ft



Example 2

Determine the reactions for the two‐span continuous
beam shown in Fig., by the method of least work. EI is
constantconstant.

D

30 kN/m
80 kN

B
D

10 m

CA

5 m 5 m
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Solution
80 kN

D

30 kN/m
80 kN

B
Ax

CA
x

Ay By Dy

• The beam is supported by four reactions. Since there are
only three equilibrium equations, the degree of
indeterminacy of the beam is equal to 1.

• Let us select the reaction By to be the redundant.

20



Solution
80 kN

D

30 kN/m
80 kN

B
Ax

CA
x

Ay By Dy

• The magnitude of the redundant will be determined by
minimizing the strain energy of the beam with respect to
By.

• The strain energy of a beam subjected only to bending is

2ML

∫
21

(1)                         
20

 dx
EI

MU
L

∫=



Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax

Ay By Dy

• According to the Principle of Least Work.

(2)0dxMMU L

∫
∂∂

• Before we can obtain the equations for bending

(2)                        0
0

dx
EIBB yy

∫ =
∂

=
∂

q g
moments, M, we must express the reactions at the
supports A and D of the beam in terms of the redundant
By.

22



Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax = 0

Ay = 245 ‐ 0.5By By Dy = 135 ‐ 0.5By

• Applying the three equilibrium equations, we write

ANS      0                                                  0 ==∑→+ xx AF∑ xx

( ) ( )( ) ( ) ( ) ( )35024505801015103020
0    D

BABA
      M

++
=∑+

( ) ( )( ) ( ) ( ) ( )3   5.0245      05801015103020 yyyy BA    BA −==+−+−

0y       F =∑↑+

23

( ) ( ) ( )4   5.0135       08010305.0245 yyyyy

y

BD    DBB −==+−+−−



Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax = 0

Ay = 245 ‐ 0.5By By Dy = 135 ‐ 0.5By

• To determine the equations for bending moments, M,
10 m 5 m 5 m

the beam is divided into three segments, AB, BC, and CD.

• The x coordinates used for determining the equations are
shown in Figure.

• The bending moment equations , in terms of By, are
tabulated in Table on next slide.
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Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax = 0

Ay = 245 ‐ 0.5By By Dy = 135 ‐ 0.5By

x

10 m 5 m 5 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 10 (245 – 0.5By)x – 15x2 ‐0.5xAB A 0 10 (245 0.5By)x 15x 0.5x
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Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax = 0

Ay = 245 ‐ 0.5By By Dy = 135 ‐ 0.5By

x

10 m 5 m 5 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 10 (245 – 0.5By)x – 15x2 ‐0.5xAB A 0 10 (245 0.5By)x 15x 0.5x

DC D 0 – 5 (135 – 0.5By)x ‐0.5x
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Solution
30 kN/m

80 kN

D

30 kN/m

C

B

A
Ax = 0

Ay = 245 ‐ 0.5By By Dy = 135 ‐ 0.5By

x

10 m 5 m 5 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 10 (245 – 0.5By)x – 15x2 ‐0.5xAB A 0 10 (245 0.5By)x 15x 0.5x

DC D 0 – 5 (135 – 0.5By)x ‐0.5x

CB D 5 – 10 (135 – 0.5By)x – 80(x ‐5) ‐0.5x

27



Solution

• By substituting the expressions for M and ∂M/∂By into
Eq. (2), we write

( )( )155.02455.01 10

0

2 +−−−∫ dxxxBxx
EI y

( )( )

( )1

5.01355.01

10

5

0
+−−∫ dxxBxx

EI y

( )( ) 04005.0555.01 10

5
=+−−∫ dxxBxx

EI y

• By integrating, we obtain

ANS5242066716666741640 ↑=⇒=+− kNBB

28

ANS      5242             0667.166667.416,40 ↑=⇒=+ kN.BB yy



Solution

• By substituting the value of By into Eqs. (3) and (4),
respectively, we determine the vertical reactions at
s pports A and Dsupports A and D.

ANS                                                                 75.123 ↑=  kNAy

ANS                                                                  75.13 ↑=  kNDy

y

30 kN/m
80 kN

B
D

C

B

A
Ax = 0

29

Ay = 123.75 kN By = 242.5 kN Dy = 13.75 kN



Solution

-

30 kN/m
80 kN

D
C

B

A
Ax = 0

Ay = 123.75 kN By = 242.5 kN Dy = 13.75 kN

123.75 kN
Shear Diagram

66.25 kN

176.25 kN

13.75 kN

Moment Diagram

255.2 kN‐m

68.8 kN‐m

30262.5 kN‐m



Example 3

Determine the reactions for the beam shown in Fig., by
the method of least work. EI is constant.

D

30 kN

B

5 kN

D

2 m

C
A

4 m 4 m

31



Solution

The beam is supported by four reactions. The equations
of equilibrium is three, so the beam is indeterminate to
the first degreethe first degree.

D

30 kN

B

5 kN

C
A

By D

Dx

MD

y Dy

• Let us select the reaction By to be the redundant.
32



Solution 30 kN5 kN

D

C

B
A Dx

By Dy

MD

• The magnitude of the redundant will be determined by
minimizing the strain energy of the beam with respect to
By.

• The strain energy of a beam subjected only to bending is

(1)                           
20

2

 dx
EI

MU
L

∫=

33
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Solution 30 kN5 kN

D

C

B
A Dx

By Dy

MD

• According to the Principle of Least Work.

(2)0dxMMU L

∫
∂∂

• To determine the equations for bending moments, M,

(2)                        0
0

dx
EIBB yy

∫ =
∂

=
∂

q g , ,
the beam is divided into three segments, AB, BC, and CD.

• The x coordinates used for determining the equations are
shown in Figure on next slide.
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Solution

• The bending moment equations , in terms of By, are
tabulated in Table.

30 kN5 kN

D

30 kN

B
A

5 kN

D
C

A

By Dy

Dx

MD
x

Dy
2 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 2 ‐5x 0

35



Solution

• The bending moment equations , in terms of By, are
tabulated in Table.

30 kN5 kN

D

30 kN

B
A

5 kN

D
C

A

By Dy

Dx

MD
x

Dy
2 m 4 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 2 ‐5x 0

BC A 2 – 6 ‐5x + By(x‐2) x ‐ 2 

36

y( )



Solution

• The bending moment equations , in terms of By, are
tabulated in Table.

30 kN5 kN

D

30 kN

B
A

5 kN

D
C

A

By Dy

Dx

MD
x

Dy
2 m 4 m 4 m

Segment Origin Limits M ∂M/∂By
AB A 0 – 2 ‐5x 0

BC A 2 – 6 ‐5x + By(x‐2) x ‐ 2 

37

y( )

CD A 6 – 10 ‐5x + By(x‐2) – 30(x‐6) x ‐ 2 



Solution

• By substituting the expressions for M and ∂M/∂By into
Eq. (2), we write

(2)                           0
0

 dx
EI
M

B
M

B
U L

yy
∫ =
∂
∂

=
∂
∂

( )( ) ( )( )( )
1

2251051 6

2

2

0
+−−+−+− ∫∫ dxxxBx

EI
dxx

EI y

( ) ( )( )( ) 02630251 10

6
=−−−−+−∫ dxxxxBx

EI y

• By integrating, we obtain

ANS25160661703272773 ↑=⇒=+− kNBB

38

ANS     25.16             066.170327.2773 ↑=⇒=+ kNBB yy



Solution

• By using the equations of equilibrium, the remaining
reactions are find as

ANS                      0

ANS         8.18

D
 kND

x

y

=

↑=

ANS       40 m kNM D −=

D

30 kN

B

5 kN

MD = 40 kN‐m

C
A

B = 16 25 kN

Dx = 0

39

By = 16.25 kN
Dy = 18.8 kN



Solution
D

30 kN

B

5 kN

MD = 40 kN‐m
D

C

B
A Dx = 0

D

By = 16.20 kN
Dy = 18.8 kN

11 2

‐5

Shear Diagram

11.2

‐18.8

Moment Diagram
35

40

‐10
‐40



Example 4

Determine the reactions for the frame shown in Fig., by
the method of least work. EI is constant.

5 m
k

5 m

B

40 kN

C

D

5 m

C

5 m

A

41

A



Solution

The structure is indeterminate to the 2nd degree. It has
two redundant reactions.

40 kN

B

C

D
HD

VD

MD

AR2

42

R1



Solution

Let us choose R1 and R2, the reactions at A, to be the
redundants.

40 kN

B

C

D
HD

VD

MD

AR2

43

R1



Solution
B

40 kN

D

C

V

HD

MD
VD

A

R

R2

According to the principle of least work
R1

(1)0dxMMU L

∫ =
∂

=
∂ (1)                        0

0
11

 dx
EIRR ∫ =

∂
=

∂

MMU L ∂∂

44

(2)                           0
0

22

 dx
EI
M

R
M

R
U L

∫ =
∂
∂

=
∂
∂



Solution
B

40 kN

D

C

V

HD

MD
VD

A

R

R2

The expressions for moment and its derivative needed to

R1

p
solve Eq. (1) & (2) are listed in the table on next slide.

45



Solution 40 kN

B

C

D
HD

VD

MD

5 m

AR2

x

R1

/ /Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

AB A 0 – 5 ‐ R2x 0 ‐x

46



Solution 40 kN

B

C

D
HD

x

VD

MD
x

5 m

AR2

R1

/ /Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

AB A 0 – 5 ‐ R2x 0 ‐x

BC B 0 – 5 R1x ‐ 5R2 x ‐5

47



Solution 40 kN

B

C

D
HD

x

VD

MD
x

5 m 5 m

AR2

R1

/ /Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

AB A 0 – 5 ‐ R2x 0 ‐x

BC B 0 – 5 R1x ‐ 5R2 x ‐5

48

CD B 5 – 10 R1x ‐ 5R2 – 40x + 200 x ‐5



Solution

Substitute these values into Eq. (1) & (2).

(1)0dxMMU L

∫ =
∂

=
∂ (2)0dxMMU L

∫ =
∂

=
∂(1),   0

0
11

dx
EIRR ∫ =

∂
=

∂
(2)  0

0
22

dx
EIRR ∫ =

∂
=

∂

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

AB A 0 5 R 0AB A 0 – 5 ‐ R2x 0 ‐x

BC B 0 – 5 R1x ‐ 5R2 x ‐5

CD B 5 – 10 R1x ‐ 5R2 – 40x + 200 x ‐5

( ) ( )∫∫ =+−−+−
10 2

2
2

1

5

2
2

1 02004055 dxxxxRxRdxxRxR( ) ( )∫∫ 5 210 21

( ) ( )∫∫∫ =−++−++−+
10

5 21

5

0 21

5

0

2
2 01000200255255 dxxRxRdxRxRdxxR

49

∫∫∫ 500



Solution

From which

04167250333 21 =−− RR
02500292250
04167250333   

21

21

=++− RR
RR

and

ANS06
ANS                  0.171

kNR
kNR =

ANS                 0.62 kNR =

50



Solution

40 kN M = 60 kN‐m

5 m5 m

B

C

D
HD = 6 kN

MD = 60 kN‐m

VD = 23 kN

5 m

AR2 = 6 kN

R1 = 17 kN

51



Solution

-

B

40 kN

D
H 6 kN

MD = 60 kN‐m

C

VD = 23 kN

HD = 6 kN

D

A

R = 17 kN

R2 = 6 kN

R1 = 17 kN

17

Shear Diagram

‐23

52
‐6



Solution

-

B

40 kN

D
H 6 kN

MD = 60 kN‐m

C

VD = 23 kN

HD = 6 kN

D

A

R = 17 kN

R2 = 6 kN

55R1 = 17 kN

‐30

55

Moment Diagram

‐60

53



Example 5

University of Engineering & Technology, Taxila

Determine the reactions for the frame shown in Fig., by
the method of least work. EI is constant.

B
10 kN

C

E

2 m

10 kN
F

2 m

DA

54

1.5 m 1.5 m



Solution

University of Engineering & Technology, Taxila

The structure is indeterminate to the first degree. It has
single redundant reaction.

B
10 kN

C

E

10 kN
F

DAHA

MA

55R1

VA



Solution

University of Engineering & Technology, Taxila

Let us choose R1, the reaction at D, to be the redundant.

B
10 kN

C

E

10 kN
F

DAHA

MA

56R1

VA



Solution

University of Engineering & Technology, Taxila

B
10 kN

C

E

10 kN
F

DAHA

MA

D

R1

VA

HA

According to the principle of least work

MMU L

∫
∂∂

1

57

(1)                         0
0

11

 dx
EI
M

R
M

R
U L

∫ =
∂
∂

=
∂
∂



Solution

University of Engineering & Technology, Taxila

B
10 kN

C

E

10 kN
F 4 m

DAHA

MA
x

D

R1

VA

HA

1

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

58



Solution

University of Engineering & Technology, Taxila

B
10 kN

C1.5 m

E
x

10 kN
F 4 m

DAHA

MA

D

R1

VA

HA

1

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

59

CE C 0 – 1.5 R1.x x



Solution

University of Engineering & Technology, Taxila

B

10 kN

C1.5 m1.5 m

E
x

10 kN
F 4 m

DAHA

MA

D

R1

VA

HA

1

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

60

CE C 0 – 1.5 R1.x x

EB C 1.5 – 3 R1.x – 10(x ‐ 1.5) x



Solution

University of Engineering & Technology, Taxila

B

10 kN

C1.5 m1.5 m

E
x

2 m

10 kN
F 4 m

DAHA

MA

D

R1

VA

HA

1

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

CE C 0 1 5 R x x

61

CE C 0 – 1.5 R1.x x

EB C 1.5 – 3 R1.x – 10(x ‐ 1.5) x

BF B 0 – 2 3R1 – 10(1.5) 3



Solution

University of Engineering & Technology, Taxila

B

10 kN

C1.5 m1.5 m

E

2 m

10 kN
F 4 m
x

DAHA

MA
2 m

D

R1VA

HA

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

CE C 0 – 1.5 R1.x x

EB C 1 5 – 3 R x – 10(x 1 5) x

62

EB C 1.5 – 3 R1.x – 10(x ‐ 1.5) x

BF B 0 – 2 3R1 – 10(1.5) 3

FA F 0 – 2 3R1 – 10(1.5) – 10x 3



Solution

University of Engineering & Technology, Taxila

Segment Origin Limits M ∂M/∂R1

DC D 0 – 4 0 0

CE C 0 – 1.5 R1.x x1

EB C 1.5 – 3 R1.x – 10(x ‐ 1.5) x

BF B 0 – 2 3R1 – 10(1.5) 3

FA F 0 2 3R 10(1 5) 10x 3FA F 0 – 2 3R1 – 10(1.5) – 10x 3

( )[ ] ( ) ( )∫∫∫∫ ++++
220.35.1 2 03045914591151011 dRdRdRdR ( )[ ] ( ) ( )∫∫∫∫ =−−+−++−+

0 10 15.1 10

2
1 0304594591510 dxxR

EI
dxR

EI
xdxxR

EI
dxxR

EI

kNkNR 6958.51 ≅= kNkNR 6 958.51 ≅

63



Solution

University of Engineering & Technology, Taxila

B
10 kN

C

E

10 kN

E

10 kN
F

k

DA10 kN

17.1 kN‐m

4 6Axial Force Diagram

R1 = 6 kN
4 kN 

4 Axial Force Diagram

64



Solution
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B
10 kN

C

E

4

10 kN

E
6

10 kN
F

k

DA10 kN

17.1 kN‐m

10 Shear Force Diagram

R1 = 6 kN
VA = 4 kN 

10 Shear Force Diagram

65
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B
10 kN

C

E

8.9

10 kN

E

10 kN
F

k

2.9

DA10 kN

17.1 kN‐m

‐17.1

Bending Moment Diagram

R1 = 6 kN
VA = 4 kN 

Bending Moment Diagram

66



Example 6

University of Engineering & Technology, Taxila

Determine the reactions for the frame shown in Fig., by
the method of least work. EI is constant.

B
10 kN

C

E

2 m

10 kN
F

2 m

DA

67

1.5 m 1.5 m



Solution

University of Engineering & Technology, Taxila

The structure is indeterminate to the second degree. It
has two redundant reactions.

B
10 kN

C

E

10 kN
F

DAHA

MA

R2

68R1

VA



Solution
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Let us choose R1, R2, the reaction at D, to be the
redundant.

B
10 kN

C

E

10 kN
F

DAHA

MA

R2

69R1

VA



Solution
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According to the Principle of Least Work

10 kN
B

10 kN
C

E

∫
∂∂ L

dxMMU 0

10 kN

∫ =
∂

=
∂

dx
EIRR 0

11

0

F

MA

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
22

0

DAHA

MA

R2

70

R1

VA



Solution
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B
10 kN

C

E

10 kN
F 4 m

D
AHA

MA
x

R2

VA

HA

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

1

71



Solution
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B
10 kN

C1.5 m

E
x

10 kN
F 4 m

D
AHA

MA

R2

VA

HA

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

1

72

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4



Solution

University of Engineering & Technology, Taxila

B

10 kN

C1.5 m1.5 m

E
x

10 kN
F 4 m

D
AHA

MA

R2

VA

HA

Segment Origin Limits M ∂M/∂R ∂M/∂R

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4

73

EB C 1.5 – 3.0 ‐4R2 + R1.x ‐10(x‐1.5) x ‐4



Solution
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B

10 kN

C1.5 m1.5 m

E

10 kN
F 4 m

x

D
AHA =R2 ‐ 10

MA =35 ‐ 3R1

R2

VA = 10 – R1

HA R2 10

Segment Origin Limits M ∂M/∂R ∂M/∂R

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4

74

EB C 1.5 – 3.0 ‐4R2 + R1.x ‐10(x‐1.5) x ‐4

FB A 2 – 4 ‐35 + 3R1 – (R2 – 10)x –
10(x – 2)

3 ‐x



Solution
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B

10 kN

C1.5 m1.5 m

E

10 kN
F 4 m

D
A R2

x

HA =R2 ‐ 10

MA =35 ‐ 3R1

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 4 R 0

R1

R2

VA = 10 – R1

HA R2 10

DC D 0 – 4 ‐R2.x 0 ‐x

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4

EB C 1.5 – 3.0 ‐4R2 + R1.x ‐10(x ‐ 1.5) x ‐4

75

FB A 2 – 4 ‐35 + 3R1 – (R2 – 10)x – 10(x – 2) 3 ‐x

AF A 0 – 2 ‐35 + 3R1 – (R2 – 10)x 3 ‐x



Solution
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Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4

EB C 1.5 – 3.0 ‐4R2 + R1.x ‐10(x ‐ 1.5) x ‐4

FB A 2 – 4 ‐35 + 3R1 – (R2 – 10)x – 10(x – 2) 3 ‐x1 2

AF A 0 – 2 ‐35 + 3R1 – (R2 – 10)x 3 ‐x

∫
∂∂ L MMU

( ) ( )[ ]∫∫ −−+−++−
0.3

12

5.1

12 5.1104141 xdxxxRRxdxxRR

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
11

0

( ) ( )[ ]

( ) ( )( ) ( )( )∫∫

∫∫

=−−+−+−−−−+−+

+++

2

0 21

4

2 21

5.1 120 12

031033513210103351

5.11044

dxxRR
EI

dxxxRR
EI

xdxxxRR
EI

xdxxRR
EI

76
0125.2684245 21 =−− RR



Solution
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Segment Origin Limits M ∂M/∂R1 ∂M/∂R2

DC D 0 – 4 ‐R2.x 0 ‐x

CE C 0 – 1.5 ‐4R2 + R1.x x ‐4

EB C 1.5 – 3.0 ‐4R2 + R1.x ‐10(x ‐ 1.5) x ‐4

FB A 2 – 4 ‐35 + 3R1 – (R2 – 10)x – 10(x – 2) 3 ‐x1 2

AF A 0 – 2 ‐35 + 3R1 – (R2 – 10)x 3 ‐x

∫
∂∂ L MMU

( )( ) ( )( ) ( )[ ]( )∫∫∫ −−−+−+−+−+−−
0.3

12

5.1

12

4

2 45.110414411 dxxxRRdxxRRdxxxR

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
22

0

( )( ) ( )( ) ( )[ ]( )

( ) ( )( )( ) ( )( )( )∫∫

∫∫∫

=−−−+−+−−−−−+−+
2

0 21

4

2 21

5.1 120 120 2

0103351210103351 dxxxRR
EI

dxxxxRR
EI

EIEIEI

77
033.17867.9042 21 =++− RR



Solution
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033178679042 =++ RR

0125.2684245 21 =−− RR

solving simultaneously, we have

033.17867.9042 21 =++− RR

kNR
kNR

4139641
 30.72608.7

2

1

≅=
≅=

kNR  4.13964.12 ≅
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B
10 kN

C

E

10 kN
F

DA8.6 kN

13.2 kN‐m

1. 4 kN

7.30 kN
2.7 kN

79



Solution
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B
10 kN

C
1.4

E

10 kN
F

2.7 7.3Axial Force Diagram
DA

13.2 kN‐m

1 4 kN8 6 kN 2.7 7.3Axial Force Diagram

7.30 kN
2.7 kN

1. 4 kN8.6 kN

80



Solution
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B
10 kN

C
2.7 1.4

E

‐7.3

10 kN
F 8.6

‐1.4

DA

13.2 kN‐m

1 4 kN8 6 kN

7.30 kN
2.7 kN

1. 4 kN8.6 kN Shear Force Diagram

81



Solution
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B
10 kN

C 1.194

5.3

E ‐5.6

10 kN
F

3.983

‐13.2DA

13.2 kN‐m

1 4 kN8 6 kN Bending Moment Diagram

7.30 kN
2.7 kN

1. 4 kN8.6 kN

82



Example 7

University of Engineering & Technology, Taxila

Determine the reactions for the frame shown in Fig., by
the method of least work. EI is constant.

B
10 kN

C

E

2 m

10 kN
F

2 m

DA

83

1.5 m 1.5 m



Solution
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The structure is determinate to the third degree. It has
three redundant reactions.

B
10 kN

C

E

2 m

10 kN
F

2 m

DAHA

MA

R2

R3

84

1.5 m 1.5 m
R1

VA



Solution
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Let us choose R1, R2, R3, the reaction at D, to be the
redundant.

B
10 kN

C

E

2 m

10 kN
F

2 m

DAHA

MA

R2

R3

85

1.5 m 1.5 m
R1

VA



Solution
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According to the Principle of Least Work

10 kN
B

10 kN
C

E

∫
∂∂ L

dxMMU 0

10 kN

∫ =
∂

=
∂

dx
EIRR 0

11

0

F

MA

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
22

0
R3

DAHA

MA

R2

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
0

86

R1

VA
∫ ∂∂ EIRR 0

33



Solution
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B
10 kN

C

E

10 kN
F 4 m

D
AHA

MA
x

R2

R3

VA

HA

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

1

87



Solution
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B
10 kN

C1.5 m

E
x

10 kN
F 4 m

D
AHA

MA

R2

R3

VA

HA

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 1 5 R R 4 R 4 1

1

88

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1



Solution
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B

10 kN

C1.5 m1.5 m

E
x

10 kN
F 4 m

D
AHA

MA

R2

R3

VA

HA

R1

R2

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 1 5 R R 4 R 4 1

1

89

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1



Solution
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B

10 kN

C1.5 m1.5 m

E

10 kN
F 4 m

x

D
A R2

R3

HA =R2 ‐ 10

MA =35 ‐ 3R1 + R3

R1

R2

VA = 10 – R1

HA R2 10

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

90

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1

FB A 2 – 4 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 
– 10(x – 2)

3 ‐x ‐1



Solution

University of Engineering & Technology, Taxila

B

10 kN

C1.5 m1.5 m

E

10 kN
F 4 m

D
A R2

R3x

HA =R2 ‐ 10

MA =35 ‐ 3R1 + R3

Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

R1

R2

VA = 10 – R1

HA R2 10

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1

91

FB A 2 – 4 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 
– 10(x – 2)

3 ‐x ‐1

AF A 0 – 2 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 3 ‐x ‐1



Solution
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Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1

FB A 2 – 4 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 
– 10(x – 2)

3 ‐x ‐1

( ) ( )AF A 0 – 2 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 3 ‐x ‐1

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
11

0

( ) ( )[ ]∫∫ −−−−+−−
0.3

5.1 321

5.1

0 321 5.1104141 xdxxRRxR
EI

xdxRRxR
EI

∂∂ EIRR 11

( ) ( ) ( )( ) ( )( )∫∫ =−+−+−+−−+−+−+−+
2

0 312

4

2 312 033351013210335101 dxRRxR
EI

dxxRRxR
EI

92
(1)           0125.2685.164245 321 =−−− RRR



Solution
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Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1

FB A 2 – 4 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 
– 10(x – 2)

3 ‐x ‐1

( ) ( )AF A 0 – 2 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 3 ‐x ‐1

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
22

0

( )( ) ( )( ) ( )[ ]( )∫∫∫ −−−−−+−−−+−−−
0.3

5.1 321

5.1

0 321

4

0 32 45.110414411 dxxRRxR
EI

dxRRxR
EI

dxxRxR
EI

∂∂ EIRR 22

( ) ( ) ( )( )( ) ( )( )( )∫∫ =−−+−+−+−−−+−+−+−+
2

0 312

4

2 312 0335101210335101 dxxRRxR
EI

dxxxRRxR
EI

93
(2)           033.1782867.9042 321 =+++− RRR



Solution
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Segment Origin Limits M ∂M/∂R1 ∂M/∂R2 ∂M/∂R3

DC D 0 – 4 ‐R2.x  ‐ R3 0 ‐x ‐1

CE C 0 – 1.5  R1.x ‐R2.4 ‐ R3 x ‐4 ‐1

EB C 1.5 – 3.0 R1.x ‐R2.4 ‐ R3 – 10(x – 1.5) x ‐4 ‐1

FB A 2 – 4 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 
– 10(x – 2)

3 ‐x ‐1

( ) ( )AF A 0 – 2 ‐(R2 –10)x ‐ (+35 ‐ 3R1 + R3) 3 ‐x ‐1

∫ =
∂
∂

=
∂
∂ L

dx
EI
M

R
M

R
U

0
33

0

( )( ) ( )( ) ( )[ ]( )∫∫∫ −−−−−+−−−+−−−
0.3

5.1 321

5.1

0 321

4

0 32 15.1104114111 dxxRRxR
EI

dxRRxR
EI

dxRxR
EI

∂∂ EIRR 33

( ) ( ) ( )( )( ) ( )( )( )∫∫ =−−+−+−+−−−+−+−+−+
2

0 312

4

2 312 013351011210335101 dxRRxR
EI

dxxRRxR
EI

94
(3)           025.9111285.16 321 =+++− RRR



Solution
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(1)           0125.2685.164245 321 =−−− RRR

(2)           033.1782867.9042 321 =+++− RRR

(3)           025.9111285.16 321 =+++− RRR

By solving simultaneously, we have

kNR ↑≅ 506486

kNkNR
kNR
kNR

≅
←≅=
↑≅=

705635
 80.2 77.2

50.6 48.6

2

1
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mkNmkNR −≅−−= 70.5 63.53



Solution
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B

10 kN

C
2.8

E

10 kN
F

D
A

2 80 kN

5.70 kN‐m

7 2 kN

9.9 kN‐m

3.5 6.5Axial Force Diagram

6.50 kN

2.80 kN

3.5 kN

7.2 kN 6.5Axial Force Diagram
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Solution
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3.5
2.8B

10 kN

C

‐6.5

E

7.2 ‐2.8
10 kN

F

D
A

2 80 kN

5.70 kN‐m

7 2 kN

9.9 kN‐m

Shear Force Diagram

6.50 kN

2.80 kN

3.5 kN

7.2 kN

97



Solution
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B

10 kN

C

4.3

1E ‐5.5‐1

10 kN
F

4.5

‐9.9
D

A
2 80 kN

5.70 kN‐m

7 2 kN

9.9 kN‐m

‐5.7
Bending Moment Diagram

6.50 kN

2.80 kN

3.5 kN

7.2 kN
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