Method of Consistent Deformation

Structural Analysis
By
R. C. Hibbeler

FRAMES

- Method of consistent deformation is very useful for solving problems involving statically indeterminate frames for single story and unusual geometry.
- Problems involving multistory frames, or with high indeterminacy are best solved using the slope deflection or moment distribution or the stiffness methods.

Example 6

Determine the support reactions on the frame shown. El is constant.

Solution
Principle of Superposition

- By inspection the frame is indeterminate to the first degree.

Solution

Principle of Superposition

- We will choose the horizontal reaction at support B as the redundant.
- The pin at B is replaced by the roller, since a roller will not constraint B in the horizontal direction.

8 kN/m

Solution

Compatibility Equation

8 kN/m

Solution

Compatibility Equation

$$
0=\Delta_{B}+B_{x} f_{B B}
$$

- The terms Δ_{B} and $f_{B B}$ will be computed using the method of virtual work.
- The frame's x coordinates and internal moments are shown in figure.
- It is important that in each case the selected coordinate x_{1} or x_{2} be the same for both the real and virtual loadings.
- Also the positive directions for M and m must be same.

Solution

Compatibility Equation

- For Δ_{B} we require application of real loads and a virtual unit load at B

Solution

$$
\begin{aligned}
\Delta_{B} & =\int_{0}^{L} \frac{M m}{E I} d x=\int_{0}^{5} \frac{\left(20 x_{1}-4 x_{1}^{2}\right)\left(0.8 x_{1}\right) d x_{1}}{E I}+\int_{0}^{4} \frac{0\left(1 x_{2}\right) d x_{2}}{E I} d x \\
& =\frac{166.7}{E I}+0=\frac{166.7}{E I}
\end{aligned}
$$

Solution

Compatibility Equation

- For $f_{B B}$ we require application of real unit load acting at B and a virtual unit load acting at B

Solution

$$
\begin{aligned}
f_{B B} & =\int_{0}^{L} \frac{m m}{E I} d x=\int_{0}^{5} \frac{\left(0.8 x_{1}\right)^{2} d x_{1}}{E I}+\int_{0}^{4} \frac{0\left(1 x_{2}\right)^{2} d x_{2}}{E I} d x \\
& =\frac{26.7}{E I}+\frac{21.3}{E I}=\frac{48.0}{E I}
\end{aligned}
$$

Solution

Compatibility Equation

$$
\begin{equation*}
0=\Delta_{B}+B_{x} f_{B B} \tag{1}
\end{equation*}
$$

- Substituting the data in Eq. (1)

$$
\begin{aligned}
0 & =\frac{166.7}{E I}+B_{x}\left(\frac{48.0}{E I}\right) \\
B_{x} & =-3.47 \mathrm{kN}
\end{aligned}
$$

Solution

Equilibrium Condition

- Showing B_{x} on the free body diagram of the frame in the correct direction, and applying the equations of equilibrium, we have

Solution

$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-3.47=0 \quad A_{x}=3.47 k N$
$\left(+\sum M_{A}=0 ; \quad-40(2.5)+B_{y}(5)-3.47(4)=0 \quad B_{y}=22.8 \mathrm{kN}\right.$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}-40+22.8=0 \quad A_{y}=17.2 \mathrm{kN}$

Example 7

Determine the moment at fixed support A for the frame shown. El is constant.

Actual Frame

Solution

Principle of Superposition

Actual Frame

- By inspection the frame is indeterminate to the first degree.

Solution

Principle of Superposition

- M_{A} can be directly obtained by choosing as the redundant.
- The capacity of the frame to support a moment at A is removed and therefore a pin is used at A for support.

Solution

Compatibility Equation $\quad\left((+) \quad 0=\theta_{A}+M_{A} \alpha_{A A}\right.$

Reference to point A

Solution

Compatibility Equation

$$
\begin{equation*}
\left((+) \quad 0=\theta_{A}+M_{A} \alpha_{A A}\right. \tag{1}
\end{equation*}
$$

- The terms θ_{A} and $\alpha_{A A}$ will be computed using the method of virtual work.
- The frame's x coordinates and internal moments are shown in figure.

Solution

Compatibility Equation

Reference to point A

Solution

For θ_{A} we require application of real loads and a virtual unit couple moment at A

$$
\begin{aligned}
\theta_{A} & =\sum \int_{0}^{L} \frac{M m_{\theta}}{E I} d x=\int_{0}^{8} \frac{\left(29.17 x_{1}\right)\left(1-0.0833 x_{1}\right) d x_{1}}{E I}+\int_{0}^{5} \frac{\left(296.7 x_{2}-50 x_{2}^{2}\right)\left(0.0067 x_{2}\right) d x_{2}}{E I} \\
& =\frac{518.5}{E I}+\frac{303.2}{E I}=\frac{821.8}{E I}
\end{aligned}
$$

Solution
For $\alpha_{A A}$ we require application of real unit couple moment and a virtual unit couple moment at A

$$
\begin{aligned}
\alpha_{A A} & =\sum \int_{0}^{L} \frac{m_{\theta} m_{\theta}}{E I} d x=\int_{0}^{8} \frac{\left(1-0.0833 x_{1}\right)^{2} d x_{1}}{E I}+\int_{0}^{5} \frac{\left(0.0067 x_{2}\right)^{2} d x_{2}}{E I} \\
& =\frac{3.85}{E I}+\frac{0.185}{E I}=\frac{4.04}{E I}
\end{aligned}
$$

Solution

Substituting these results into
Eq. (1), and solving yields

$$
\begin{aligned}
& 0=\frac{821.8}{E I}+M_{A}\left(\frac{4.04}{E I}\right) \\
& M_{A}=-204 \mathrm{lb} . f t
\end{aligned}
$$

The negative sign indicates M_{A} acts in opposite direction to that shown in figure.

Example 8

Determine the reactions and draw the shear and bending moment diagrams. El is constant.

Solution
Principle of Superposition

- Degree of indeterminacy $=2$

Solution

Principle of Superposition

- We will choose the horizontal reaction D_{x} and vertical reaction D_{y} at point D as the redundants.

Actual Frame

Solution

Principle of Superposition

- Primary structure is obtained by removing the hinged support at point D.

Solution

Principle of Superposition

- Primary structure is subjected separately to the external loading and redundants D_{x} and D_{y} as shown.

Solution

Principle of Superposition

- Primary structure is subjected separately to the external loading and redundants D_{x} and D_{y} as shown.

Solution

Principle of Superposition

- Primary structure is subjected separately to the external loading and redundants D_{x} and D_{y} as shown.

Redundant D_{y} applied

Solution

Compatibility Equation

$$
\begin{align*}
& 0=\Delta_{D x}+\Delta_{D x D x}^{\prime}+\Delta_{D x D y}^{\prime}=\Delta_{D x}+D_{x} f_{D x D x}+D_{y} f_{D x D y} \tag{1}\\
& 0=\Delta_{D y}+\Delta_{D y D x}^{\prime}+\Delta_{D y D y}^{\prime}=\Delta_{D y}+D_{x} f_{D y D x}+D_{y} f_{D y D y} \tag{2}
\end{align*}
$$

- The equations for bending moments for the members of the frame due to external loading and unit values of the redundants are tabulated in the table.
- By applying the virtual work method, we will find $\Delta_{D x}, \Delta_{D y}$, $f_{D x D x}, f_{D y D x}, f_{D x D y}, f_{D y D y}$

Solution

Compatibility Equation

Member	Origin	Limits	$\boldsymbol{M}(\mathbf{k}-\mathbf{f t})$
$A B$	A	$0-15$	$-1050+10 x_{1}$
CB	C	$0-30$	$-x_{2}{ }^{2}$
DC	D	$0-15$	0

Solution

Compatibility Equation

Member	Origin	Limits	$\mathbf{M}(\mathbf{k}-\mathbf{f t})$	$\mathbf{m}_{\mathrm{Dx}}(\mathbf{k}-\mathbf{f t} / \mathbf{k})$
AB	A	$0-15$	$-1050+10 \mathrm{x}_{1}$	$-\mathrm{x}_{1}$
CB	C	$0-30$	$-\mathrm{x}^{2}{ }^{2}$	-15
DC	D	$0-15$	0	$-x_{3}$

Solution

Compatibility Equation

Member	Origin	Limits	$\mathbf{M}(\mathbf{k}-\mathbf{f t})$	$\mathbf{m}_{\mathrm{Dx}}(\mathbf{k}-\mathbf{f t} / \mathbf{k})$	$\mathbf{m}_{\mathrm{Dy}}(\mathbf{k}-\mathbf{f t} / \mathbf{k})$
AB	A	$0-15$	$-1050+10 \mathrm{x}_{1}$	$-\mathrm{x}_{1}$	30
CB	C	$0-30$	$-\mathrm{x}^{2}{ }^{2}$	-15	x_{2}
DC	D	$0-15$	0	$-x_{3}$	0

Solution

$$
\begin{aligned}
& \Delta_{D x}= \int_{0}^{L} \frac{M m_{D x}}{E I} d x= \\
&=\int_{0}^{15} \frac{\left(-1050+10 x_{1}\right)\left(-x_{1}\right)}{E I} d x_{1}+\int_{0}^{30} \frac{\left(-x_{2}^{2}\right)(-15)}{E I} d x_{2} \\
&+\int_{0}^{15} \frac{(0)\left(-x_{3}\right)}{E I} d x_{3} \\
& \Delta_{D x}= 106875+135000+0=\frac{241875}{E I} k-f t^{3} \\
& \Delta_{D y}= \int_{0}^{L} \frac{M m_{D y}}{E I} d x=\int_{0}^{15} \frac{\left(-1050+10 x_{1}\right)(30)}{E I} d x_{1}+\int_{0}^{30} \frac{\left(-x_{2}^{2}\right)\left(x_{2}\right)}{E I} d x_{2}+0 \\
& \Delta_{D y}=-438750-202500+0=-\frac{641250}{E I} k-f t^{3}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& f_{D x D x}=\int_{0}^{L} \frac{m_{D x} m_{D x}}{E I} d x=\int_{0}^{15} \frac{\left(-x_{1}\right)^{2}}{E I} d x_{1}+\int_{0}^{30} \frac{(-15)^{2}}{E I} d x_{2}+\int_{0}^{15} \frac{\left(-x_{3}\right)^{2}}{E I} d x_{3} \\
& f_{D x D x}=\frac{9000}{E I} f t^{3} \\
& f_{D y D y}=\int_{0}^{L} \frac{m_{D y} m_{D y}}{E I} d x=\int_{0}^{15} \frac{(30)^{2}}{E I} d x_{1}+\int_{0}^{30} \frac{\left(x_{2}\right)^{2}}{E I} d x_{2} \\
& f_{D y D y}=\frac{22500}{E I} f t^{3}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& f_{D x D y}=f_{D y D x}=\int_{0}^{L} \frac{m_{D x} m_{D y}}{E I} d x=\int_{0}^{15} \frac{\left(-x_{1}\right)(30)}{E I} d x_{1}+\int_{0}^{30} \frac{(-15)\left(x_{2}\right)}{E I} d x_{2} \\
& f_{D x D y}=f_{D y D x}=-\frac{10125}{E I} f t^{3}
\end{aligned}
$$

Solution

$$
\begin{aligned}
\Delta_{D x} & =\frac{241875}{E I} k-f t^{3} \\
\Delta_{D y} & =-\frac{641250}{E I} k-f t^{3} \\
f_{D x D x} & =\frac{9000}{E I} f t^{3} \\
f_{D y D y} & =\frac{22500}{E I} f t^{3} \\
f_{D x D y} & =f_{D y D x}=-\frac{10125}{E I} f t^{3}
\end{aligned}
$$

Solution

Now put these values in the Equations (1) and (2)

$$
\begin{align*}
& 0=241875+9000 D_{x}-10125 D_{y} \tag{1}\\
& 0=-641250-10125 D_{x}+22500 D_{y} \tag{2}
\end{align*}
$$

By solving (1) and (2) simultaneously we get

$$
\begin{aligned}
& D_{x}=10.503 k \leftarrow \\
& D_{y}=33.226 k \uparrow
\end{aligned}
$$

Solution

- Applying equations of equilibrium, we have the other support reactions as

Solution

- Shear diagram

Solution

- Moment diagram

TRUSSES

- The degree of indeterminacy of a truss can be find using Equation $b+r>2 j$. where
$b=$ unknown bar forces, $r=$ support reactions, 2 j = equations of equilibrium
- This method is quite suitable for analyzing trusses that are statically indeterminate to the first or second degree.

Example 9

Determine the force in member $A C$ of the truss shown. $A E$ is same for all members.

Actual Truss

Solution

The truss is statically indeterminate to the first degree.

$$
\begin{aligned}
& b+r=2 j \\
& 6+3=2(4) \\
& 9>8 \\
& 9-8=1^{\text {st }} \text { degree }
\end{aligned}
$$

Solution

Principle of Superposition

- The force in member $A C$ is to be determined, so member $A C$ is chosen as redundant.
- This requires cutting this member, so that it cannot sustain a force, making the truss S.D. and stable.

Solution

Actual Truss

Solution

Compatibility Equation

- With reference to member AC, we require the relative displacement $\Delta_{A C}$, which occurs at the ends of cut member AC due to the 400-lb load, plus the relative displacement $F_{A C} f_{A C A C}$ caused by the redundant force acting alone, be equal to zero, that is

$$
0=\Delta_{A C}+F_{A C} f_{A C A C}
$$

Solution

Compatibility Equation

- Here the flexibility coefficient $f_{A C A C}$ represents the relative displacement of the cut ends of member AC caused by a real unit load acting at the cut ends of member AC.

$$
0=\Delta_{A C}+F_{A C} f_{A C A C}
$$

Solution

Compatibility Equation

- This term, $f_{A C A C}$, and $\Delta_{A C}$ will be computed using the method of virtual work.

$$
0=\Delta_{A C}+F_{A C} f_{A C A C}
$$

Solution

Compatibility Equation

- For $\Delta_{A C}$ we require application of the real load of 400 lb , and a virtual unit force acting at the cut ends of member AC.

Solution

$$
\begin{aligned}
\Delta_{A C} & =\sum \frac{n N L}{A E} \\
& =2\left[\frac{(-0.8)(400)(8)}{A E}\right]+\frac{(-0.6)(0)(6)}{A E}+\frac{(-0.6)(300)(6)}{A E}+\frac{(1)(-500)(10)}{A E}+\frac{(1)(0)(10)}{A E} \\
& =-\frac{11200}{A E}
\end{aligned}
$$

Solution

Compatibility Equation

- For $f_{A C A C}$ we require application of the real unit forces acting on the cut ends of member AC, and virtual unit forces acting on the cut ends of member AC

Solution

$$
\begin{aligned}
f_{A C A C} & =\sum \frac{n^{2} L}{A E} \\
& =2\left[\frac{(-0.8)^{2}(8)}{A E}\right]+2\left[\frac{(-0.6)^{2}(6)}{A E}\right]+2\left[\frac{(1)^{2} 10}{A E}\right] \\
& =\frac{34.56}{A E}
\end{aligned}
$$

Solution

Substituting the data into Eq. (1) and solving yields

$$
\begin{aligned}
& 0=-\frac{11200}{A E}+\frac{34.56}{A E} F_{A C} \\
& F_{A C}=324 \mathrm{lb}(\mathrm{~T})
\end{aligned}
$$

Since the numerical result is positive, AC is subjected to tension as assumed.

Using this result, the forces in other members can be found by equilibrium, using the method of joint.

Example 10

Determine the force in member AC of the truss shown.

Example 11

Determine the reactions and the force in each member of the truss shown in Fig. shown. $\mathrm{E}=29,000 \mathrm{ksi}$

Solution

The truss is statically indeterminate to the first degree.
$b+r=2 j$
$9+4=2(6)$
$13>12$
$13-12=1^{\text {st }}$ degree

Actual Truss

- D_{x} at hinged support D is selected as Redundant.
- Primary structure is obtained by removing the effect of D_{x} and replacing hinge by roller support there.
- Primary structure is subjected separately to external loading and redundant Force D_{x}.

Solution

- Δ_{D} is horizontal deflection at point ' D ' of primary structure due to external loading.

$\Delta^{\prime}{ }_{D D}$ is horizontal deflection at point ' D ' due to redundant force D_{x}.

Solution

$f_{D D}$ is horizontal deflection at point ' D ' due to unit force.

Solution

Compatibility Equation

$$
0=\Delta_{D}+D_{x} f_{D D}
$$

Solution

- We will use virtual work method to find Δ_{D} and $f_{D D}$.
- Deflection of truss is calculated by

$$
\Delta_{D}=\sum \frac{n N L}{A E}
$$

where
$\mathrm{n}=$ axial force in truss members due to virtual unit load acting at joint and in the direction of Δ_{D}
$N=$ axial force in truss members due to real load acting that causes Δ_{D}

Solution

- We will use virtual work method to find Δ_{D} and $f_{D D}$.
- Deflection of truss is calculated by
where

$$
f_{D D}=\sum \frac{n^{2} L}{A E}
$$

$\mathrm{n}=$ axial force in truss members due to real unit load acting at joint and in the direction of Δ_{D}
$\mathrm{n}=$ axial force in truss members due to virtual unit load acting at joint and in the direction of Δ_{D}

Solution

TABLE							
Member	L (in.)	A (in. ${ }^{2}$)	$N(k)$	n (k)	$n N L / A$ (k/in.)	$\mathrm{n}^{2} \mathrm{~L} / \mathrm{A}$	$\mathrm{F}=\mathrm{N}+\mathrm{nD} \mathrm{D}_{\mathrm{x}}$
$A B$	240	6	52	1	2,080	40	6.22
BC	240	6	42.67	1	1,706.8	40	-3.11
CD	240	6	42.67	1	1,706.8	40	-3.11
EF	240	6	-24	0	0	0	-24
BF	180	4	18	0	0	0	18
CF	180	4	25	0	0	0	25
AE	300	6	-30	0	0	0	-30
BF	300	4	11.67	0	0	0	11.67
DF	300	6	-53.33	0	0	0	-53.33
$\Delta_{D}=\sum \frac{n N L}{A E}=\frac{5,493.6 \mathrm{k} / \mathrm{in} .}{\mathrm{E}}$					$\sum 5,493.6$	120	
$f_{D D}=\sum \frac{n^{2} L}{A E}$	(1/in.)						71

Solution

$$
\begin{aligned}
& \Delta_{D}=\sum \frac{n N L}{A E} \\
& \Delta_{D}=\frac{52 \times 1 \times 20 \times 12}{6 E}+\frac{42.67 \times 1 \times 20 \times 12}{6 E}+\frac{42.67 \times 1 \times 20 \times 12}{6 E} \\
& \Delta_{D}=\frac{2080}{6 E}+\frac{1706.8}{6 E}+\frac{1706.8}{6 E} \\
& \Delta_{D}=\frac{5493.6 \mathrm{k} / \mathrm{in}}{E}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& f_{D D}=\sum \frac{n^{2} L}{A E} \\
& f_{D D}=\frac{1 \times 1 \times 20 \times 12}{6 E}+\frac{1 \times 1 \times 20 \times 12}{6 E}+\frac{1 \times 1 \times 20 \times 12}{6 E} \\
& f_{D D}=\frac{120(1 / \mathrm{in})}{E}
\end{aligned}
$$

Now put these results into Equation (1)

$$
\frac{5493.6}{E}+D_{x} \times \frac{120}{E}=0 \quad \longrightarrow \quad D_{x}=-45.78 \mathrm{k}(\leftarrow)
$$

Solution

$$
\begin{aligned}
& F=N+n D_{x} \\
& F_{A B}=52+1(-45.78)=6.22(\mathrm{~T}) \\
& F_{B C}=42.67+1(-45.78)=-3.11(\mathrm{C}) \\
& F_{C D}=-3.11(\mathrm{C})
\end{aligned}
$$

Equation of Equilibrium

$$
\sum F=0
$$

$$
A_{x}+28-45.78=0
$$

$$
A_{x}=17.78 \mathrm{k} \quad(\rightarrow)
$$

$$
A_{y}=18 \mathrm{k} \quad(\uparrow)
$$

$$
D_{y}=32 \mathrm{k} \quad(\uparrow)
$$

Example 12

Determine the reactions and the force in each member of the truss shown in Fig. shown. EA = constant. $\mathrm{E}=200$ GPa., $A=4000 \mathrm{~mm}^{2}$

Solution

Principle of Superposition

Degree of Indeterminacy $=2$
$b+r>2 j$
$14+4>2 \times 8$
$18>16$

Solution

Principle of Superposition
D_{y} at support D and force $F_{B G}$ in member $B G$ are selected as redundants.

Solution

Principle of Superposition

The roller support at ' D ' is removed and member $B G$ is cut to make the structure determinate.

Determinate Truss

Solution
Principle of Superposition

This determinate truss is subjected separately to actual loading, redundant ' D_{y} ' and redundant force in the redundant member BG.

Primary structure subjected to actual loading

Solution

Principle of Superposition

This determinate truss is subjected separately to actual loading, redundant ' D_{y} ' and redundant force in the redundant member BG.

Redundant D_{y} applied

Solution

Principle of Superposition

This determinate truss is subjected separately to actual loading, redundant ' D_{y} ' and redundant force in the redundant member BG.

Redundant F_{BG} applied

Primary structure

Redundant D_{y} applied

Solution

Solution

Compatibility Equation

$$
\begin{aligned}
& 0=\Delta_{D}+D_{y} f_{D D}+F_{B G} f_{D, B G} \\
& 0=\Delta_{B G}+D_{y} f_{B G, D}+F_{B G} f_{B G, B G}
\end{aligned}
$$

$\Delta_{\mathrm{D}}=$ vertical deflection at joint D of primary truss due to external loading
$\Delta_{\mathrm{BG}}=$ relative displacement b / w cutting ends of member BG due to external loading
$f_{D D}=$ vertical deflection at joint D due to a unit load at joint D
$f_{B G, D}=$ relative displacement b / w cutting ends of member $B G$ due to unit load at D
$f_{B G, B G}=$ relative displacement b / w cutting ends of member $B G$ due to unit force
$f_{D, B G}=$ vertical deflection at joint D due to a unit force in member $B G$

Compatibility Equation

We will use the method of virtual work to find the deflections

$$
\begin{aligned}
& 0=\Delta_{D}+D_{y} f_{D D}+F_{B G} f_{D, B G} \\
& 0=\Delta_{B G}+D_{y} f_{B G, D}+F_{B G} f_{B G, B G}
\end{aligned}
$$

$$
\begin{array}{cll}
\Delta_{D} & =\sum \frac{N n_{D} L}{A E} & f_{D D}=\sum \frac{n_{D} n_{D} L}{A E}
\end{array} f_{D, B G}=\sum \frac{n_{D} n_{B G} L}{A E}, ~\left(f_{B G}=\sum \frac{n_{B G} n_{B G} L}{A E} \quad f_{B G, D}=\sum \frac{n_{B G} n_{D} L}{A E}\right.
$$

Compatibility Equation

$$
\begin{array}{rlr}
\Delta_{D}=\sum \frac{N n_{D} L}{A E} & f_{D D}=\sum \frac{n_{D} n_{D} L}{A E} & f_{D, B G}=\sum \frac{n_{D} n_{B G} L}{A E} \\
\Delta_{B G}=\sum \frac{N n_{B G} L}{A E} & f_{B G}=\sum \frac{n_{B G} n_{B G} L}{A E} & f_{B G, D}=\sum \frac{n_{B G} n_{D} L}{A E}
\end{array}
$$

$\mathrm{N}=$ member forces due to external loading
$n_{D}=$ member forces due to unit load at joint D
$\mathrm{n}_{\mathrm{BG}}=$ member forces due to unit force in member BG

The numerical values of the member forces, as computed by the method of joints, are shown in next figures, and are tabulated in the TABLE

Solution

N = member forces due to external loading

Solution

$n_{D}=$ member forces due to unit load at joint D

Solution
$\mathrm{n}_{\mathrm{BG}}=$ member forces due to unit force in member $B G$

Member	L (m)	$\begin{gathered} \mathrm{N} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} n_{\mathrm{D}} \\ (\mathrm{kN} / \mathrm{kN}) \end{gathered}$	$\begin{gathered} n_{\mathrm{BG}} \\ (\mathrm{kN} / \mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Nn}_{\mathrm{D}} \mathrm{~L} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\mathrm{Nn}_{\mathrm{BG}} \mathrm{L}$ (kN.m)	$\begin{aligned} & n_{D}^{2} L \\ & (m) \end{aligned}$	$\begin{gathered} n_{B G}{ }^{2} L^{\prime} \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{D}} \mathrm{n}_{\mathrm{BG}} \mathrm{~L} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} F=N+n_{D} D_{y}+ \\ n_{B G} F_{B G}(k N) \end{gathered}$
AB	10	152.5	-0.25	0	-381.25	0	0.625	0	0	128.373
$B C$	10	152.5	-0.25	-0.707	-381.25	-1078.175	0.625	5	1.768	104.265
CD	10	77.5	-0.75	0	-581.25	0	5.625	0	0	5.12
DE	10	77.5	-0.75	0	-581.25	0	5.625	0	0	5.12
FG	10	-85	0.5	-0.707	-425	600.95	2.5	5	-3.535	-60.855
GH	10	-85	0.5	0	-425	0	2.5	0	0	-36.747
BF	10	80	0	-0.707	0	-565.60	0	5	0	55.891
CG	10	0	0	-0.707	0	0	0	5	0	-24.109
DH	10	0	-1	0	0	0	10	0	0	-96.507
AF	14.142	-116.673	0.354	0	-584.096	0	1.772	0	0	-82.51
BG	14.142	0	0	1	0	0	0	14.142	0	34.1
CF	14.142	3.536	-0.354	1	-17.702	50.006	1.772	14.142	-5.006	3.473
CH	14.142	109.602	0.354	0	548.697	0	1.772	0	0	143.765
EH	14.142	-109.602	1.061	0	-1644.541	0	15.92	0	0	-7.208
				\sum	-4472.642	-992.819	48.736	48.284	-6.773	

Compatibility Equation

$$
\begin{gathered}
0=\Delta_{D}+D_{y} f_{D D}+F_{B G} f_{D, B G} \\
0=\Delta_{B G}+D_{y} f_{B G, D}+F_{B G} f_{B G, B G} \\
\Delta_{D}=-\frac{4,472.642 \mathrm{kN.m}}{A E} \quad f_{B G, B G}=\frac{48.284 \mathrm{~m}}{A E} \\
\Delta_{B G}=-\frac{992.819 \mathrm{kN} . \mathrm{m}}{A E} \quad f_{B G, D}=f_{D, B G}=-\frac{6.773 \mathrm{~m}}{A E} \\
f_{D D}=\frac{48.736 \mathrm{~m}}{A E}
\end{gathered}
$$

By substituting these values into the above equations

Compatibility Equation

$$
\begin{aligned}
-4,472.642+48.736 D_{y}-6.773 F_{B G} & =0 \\
-992.819-6.773 D_{y}+48.284 F_{B G} & =0
\end{aligned}
$$

Solving these equations simultaneously for D_{y} and $F_{B G}$

$$
\begin{aligned}
D_{y} & =96.507 \mathrm{kN} \uparrow \\
F_{B G} & =34.1 \mathrm{kN}
\end{aligned}
$$

The remaining reactions of the indeterminate truss can now be determined by superposition of reactions of primary truss due to the external loading and due to each of the redundants.

The forces in the remaining members of the indeterminate truss can be determined by using the superposition relationship

University of Engineering \& Technology, Taxila

Actual Truss

Actual Truss

